"MINIMUM COST DIFFERENTIATION METHODS AND THEIR USES

IN UNDERSTANDING, DESIGNING AND OPTIMIZING COMPLEX

SYSTEMS™

by Paul J. Werbos, Quality Assurance Division, 3/20/82

CONTENTS
ABSTRACT
(I) INTRODUCTION
(IT) OVERVIEW OF DIFFERENTIATION METHODS TO BE GIVEN
(IIT) SENSITIVITY ANALYSIS METHODS FOR DYNAMIC MODELS

(IV) SUMMARY OF DIFFERENTIATION METHCDS
Methods to Compute First Order Derivatives
Methods to Compute Second Order Derivatives
(Two Initial Values)
Methods to Compute Second Order Derivatives
(Variable-Parameter)

(V) DERIVATION OF BACKWARDS SWEEPS: DYNAMIC FEEDBACK
Basics of Dynamic Feedback
Second—~-Order Backwards Sweeps
Extensions and Applications

(VI) DERIVATION OF METHODS FROM PERTURBATION METHODS OF

(VII) APPLICATION TO STOCHASTIC OPTIMIZATION AND
INTELLIGENT SYSTEMS

GDHP: An Approach to Optimizing Complex, Nonlinear

Stochastic Systems
Application of Differentiation Methods
Applications to Modelling, Economics and
Artificial Intelligence

Parallels to the Human Brain

PHYSICS

Major Features of the Brain and Parallels to GDHP

Major Apparent Discrepancies
REFERENCES

APPENDIX A: THE THEOREM BEHIND DYNAMIC FEEDEBACK

12
12
13

29
35

38
38
42
45

48

"MINIMUM COST DIFFERENTIATION METHODS AND THEIR USES
IN UNDERSTANDING, DESIGNING AND OPTIMIZING COMPLEX SYSTEMS"

by Paul J. Werbos, Quality Assurance Division, 3/20/82

ABSTRACT

This paper derives low—-cost methods for computing "ordered
derivatives," which are reguired in numerous applications.
Applications to statistical estimation, optimization and eguation
solving are pointed out. Applications to the sensitivity analysis of
nonlinear dynamic models are discussed in detail. To illustrate the
possibilities for adapting these methods to deal with large "network"
systems, it is shown how to compute the derivatives reguired by a
previously proposed method for decision-making over time under
uncertainty. This example leads to an approach to the design of
generalized, adaptive decision-making systems; applications to
artificial intelligence and model evaluation concepts are discussed,
along with structural analogies to the human brain.

(I) INTRODUCTION

It is well known that the derivative and partial derivative of
elementary calculus have appllcatlons throughout the natural and
social sciences. This paper is concerned with a related mathematical
concept, the "ordered derivative," which also has many applications,
but which goes by different names in different fields of study. The
purpose of this paper is two-fold: to discuss the applications of
ordered derivatives, and to show how they may be calculated at
minimum cost either directly or as part of a "network design."
Roughly speaking, it will be shown that all of the first or second
derivatives needed for most applicationq can be obtained exactly for

a cost comparable to that of exercising the orlqlnal model or system
itself.

Section (II), below, will explain what an ordered derivative 1is,

and summarize the advantages of the alternative methods to be
described. It will also mention applications to statistical
estimation, deterministic optimization and certain eguation-solving
techniques, of particular importance to large systems. Related
methods and literature will be mentioned. Section (III) will discuss
"sensitivity analysis," which attempts to help one understand complex
systems such as energy models by pinpointing the key inputs and
providing related information. Section (IV) will list the equations
for the methods discussed in section (II), for the case of a simple
nonlinear dynamic system. Section (V) will derive and generalize

the "backwards" methods of section (IV), by using a concept called
"dynamic feedback." Section (VI) will use perturbation approaches
taken from physics to derive the remaining methods.

Section (VII) will illustrate how these methods may be adapted

to handle very difficult problems, by spelling out the calculations
required to implement a method for dynamic optimization under
uncertainty, while taking full advantage of the power of "parallel"”
or "vector" computers. It will also show that a combination of this
and related work may ultimately lead to a generalized, adaptive
artificial intelligence, without some of the limitations of those
now being developed; structural analogies between this design and
the human brain will be discussed. In the mathematical framework
provided by this section, model development may be analyzed as one
of several analysis activities regquired to support rational decision
making.

(IT) OVERVIEW OF DIFFERENTIATION METHODS TO BE GIVEN

Figure 1 shows a simple example of the kind of "derivative" we are
trying to compute. Suppose that we have a nonlinear system, with a
vector x of N endogenous variables and a vector u of exogenous vari-
ables. ~Suppose that the system is governed by the equation shown in
Figure 1. The cost of simulating the model over the whole time range
is mNT, because in each of the T time periods we compute a forecast
for eac¢h of the N variables in X, and each such forecast involves m
terms. Please note that N is often much larger than m. Given a
small change in the variable x; in time period 0, we want to know how
large the resulting change in x; is in the final time period T.

‘Ti

x(t+l) = £(x(t), u(t)) ' X (T)

Nx (T)

- N components of x

m terms per equation fj

- T time periods (t = 0 to T—l)'an (O) .
- cost of simulation = mNT '{
- not a "simultaneous" (implicit) model | x(0) l

*3

Figure 1l: A Simple Example

The change in x;(T) per change in xi(O), holding the rest of x(0)

constant,is a fundamental quantity of the sytem. It goes by many
different names. 1In modelling, it is often called a "sensitivity

coefficent." 1In economics, it is traditionally called an "“impact
multiplier."” Electrical engineers often call it a "transient re-
sponse," or "constrained derivative." ©Nuclear engineers sometimes

use the term "adjoint." Here we will call it an "ordered derivative,"
using the notation shown in Figure 1, for two reasons: (1) the
notation is somewhat more explicit than what is usually used;

and (2) the concept of ordered derivative is somewhat more general
rigorous, as will be seen. Some of the methods t?l e discussed below
were publ%i?ed independently by control engineers and by nuclear
engineers at about the same time (mid 1970 s) as the ordered
derivative concept was developed, and related methods for linear
models were available even earlier. For differential egquation
systems (which this paper does not address) the nuc%ﬁ?r engineering
literature is perhaps the most extensive at present .

Well-known applications which require the use of such first-order
derivatives are sensitivity analysis, maximization of a system result
(i.e., "deterministic optimization"), and statistical estimation. 1In
the last two cases, one actually is concerned with the derivative of
a function of x(T) or of x(t<T) rather than the derivatives of x. (T)
for some j, but it is easy to make this extension of the methodsj for
example, the function to be differentiated or a running total for it
may be added to the list of system variables.

i (OUTPUT)
‘::"——-_—h\\- FORWARDS
COST=mNT
J
(INPUT)
BACKWARDS 2
COST=mNT (OR N“T) WHOLE SQUARE
COST=mN“T
+
Xi(T)
Figure 2: Two Ways To Obtain
'a Xj (0)

Figure 2 describes two methods for computing ordered derivatives
exactly in the example above. The corresponding equations are:

2 x(¢)
: z(t) = —— ;7 z(t+l) = F(t)z(t)
9 x4(0)
T (2.1)
? x;(T)
: z (t) = ———= ; 27 (t) = FT(t)E'(t+l), (or transpose)

? x(t+l)"

where F(t) is the matrix of derivatives of f£(x(t)).

The large square in Figure 2 represents the entire matrix of ordered
derivatives of all x;(T) with respect to all xs(0). The

conventional or "forwards" method (indicated b§ an arrow pointing
upwards) is based on perturbing one of the initials values x4(1), and
observing the impact on all the final results, i.e., on the Vector
x(T). Each time we apply this method, we perturb only one of the
Tnitial values; thus we obtain only one row of the matrix of ordered
derivatives, as shown in Figure 2. This costs us mNT calculations,
as shown. Often the initial wvalue xj(O) is actually changed, and the

model resimulated. (This costs mNT operations, as did the original
run of the model.) However, this leads to problems with the numerical
accuracy of the results, because it requires that one compute each
derivative by subtracting two numbers very close to each other in
size. The forwards closed-form Jacobian formula, shown at the bottom
of Figure 2, has the same cost but is more accurate.

The backwards method, shown with a downwards pointing arrow in

Figure 2, computes an entire column of the matrix, using only mNT
calculations. In control engineering, this sort of method has been
used and related to the concept Tf "constrained derivatives," but has
not been applied more generally(.

The key point about these methods is that the forwards method is
often used when the backwards method would be more appropriate. This
can multiply costs (by a factor of N) to the point where it becomes
infeasible to do what one wants to do. For example, it has long been
known that economic data, like engineering measurements, are fraught
with many errors, and that these GYEOE§ invalidate conventional
estimation methods. Statisticians'™? observed years ago that white
noise converts a simple econometric model (like our example, but
linear) into a "vector mixed autoregrassive moving average process."
In other words, one can account for such errors in data by estimating
the corresponding vector ARMA process. However, because of the sheer
cost of such estimation, it has rarely been done in economics.
Instead, an approximation suggested by Hibbs has become popular of
late: a conventional model is estima%g? by regression, and then
simple unvariate ARMA ("Box-Jenkins") modeling is used on the
residuals, and the process may be iterated. Yet in statistical
estimation, one only needs a single column of the derivative matrix
(i.e., the derivatives of L), not the whole matrix; using the
backwards method, one can compute all the derivatives needed in an
iteration at the cost of only mNT, which is what it takes to exercise
the model. This method was applied to vector ARMA estimation in the
ear%g)l970’s, and inserted into a user-oriented software package at
MIT (TSP), but has yet to receive wide application in economics.

It now appears that vector ARMA estimation (and thus Kalman filtering
estimation, which is formally equivalent to it) may have less value
in social science than other more robust methods bas?g 9n8?
generalization of Hartley s simulation path approach'”r’’®/; however,
those methods, too, require a set of derivatives, as part of
minimizing a complicated loss function.

Likewise, in sensitivity analysis, a user often wants to know the
sensitivity of a few key results to all the initial values, or to be
sure he knows the largest of these sensitivity coefficients. Again,
only a few columns of the matrix are required; it is wasteful to pay
for the whole matrix.

With large models or network systems, N may range from the hundreds
to the millions or more. Thus cutting the cost of computing
derivatives by a factor of N is often crucial to feasibility. One
may be sure that the cost of exercising the system (mNT) is afford-
able, or the system would be of no interest; more than this, by a
multiple of N, may be unacceptably expensive.

"CHAIN RULE" (DYNAMIC FEEDBACK):
+ i +
| P _ R x; R,
x (£+1) ; = i>3
-— ng =J+l ?Xk '}XJ
CONVENTIONAL PERTURBATION:
+ i~1 +
9% ofi | 9 xg
x(t7 < t)

0 x: ka 2% i>]
j = j

Figure 3: A More General Example: x(t+l) = f(x(all t '<t+l),u(all t’))

The principle of "dynamic feedback" permits one to deal with more
general, "network" models such as the one shown in Figure 3.
Multisector models, for example, are usually best represented as a
network. B?g?use the proof of the "chain rule" for ordered
derivatives is not generally available, it is reproduced in
Appendix A.

In Figure 3, the endogenous variables may appear with any nonnegative
lag, including zero. However, we still assume here that the model
has been reduced to "explicit" form. (In economics, one would call
this a recursive model; in mathematics, one calls it a nonrecursive
system.) We assume that the functions £54 which make up £,

can be ordered in such a way that we can use them one by one to
calculate the vector x(t+l). Actually, one can apply the methods
given in this paper to simultaneous equation models as well, b¥9ysing
substitutions to be described in a forthcoming report from EIA .

Figure 3 illustrates an example where x(t+l) has eleven
components, each represented by a circle; the arrows flowing into a
circle represent inputs required to compute that component of x.

The forwards and backwards methods are generalized as shown in

Figure 3. The subscripts here refer to an ordered index of all time/
variable-number combinations; the formulas are given in more
conventional form in the main paper. The key thing to note is that
there are only m calculations per time/variable combination. Thus we
still only need to make nMT calculations to get a complete row or
column of ordered derivatives, as in our earlier example. This has

not previously beéen published. With conventional matrix methods for
constrained derivatives, based on our earlier example, one would have
to use N by N matrices f°, which would not usually be sparse; thus
the generalization here makes it feasible to differentiate large net-
work systems which would have been too expensive to differentiate
with conventional methods.

The methods shown in Figure 3 remain efficient even if one uses
"parallel" computers. Parallel computers - based on many processors
operatigg)in parallel rather than one CPU - are becoming increasingly
common . With a conventional computer, it would take roughly 11
calculation times to compute x(t+l) in our example (1 for each
component of x). With a parallel computer, it need only take 3: in
the first period, 4 processors would calculate the lower tier in
parallel, since none of the 4 lower components depends on the others;
in the second period, the middle tier would be calculated; etc. The
backwards method shown here allows similar economies: one can
calculate ordered derivatives of a model result with respect to the
top tier in the first period of calculation, then to the middle tier,
and then to the bottom tier. The forwards method is similiar.

Large scale models or systems typically can be represented as
relatively sparse networks, as in this example. Actual physical net-
works, made up of units operating in parallel, have a similar struc-
ture. To optimize such a system (except in unusual special cases) it
is essential to know the derivatives of the desired performance
measure with respect to all parameters in the system; for this to be
feasible, it is essential to use a method such as the generalized
backwards method which does not multiply the cost of getting the
derivatives far beyond the cost of exercising the system. This
reasoning also applies to the problem of minimizing or maximizing a
complicated function, where most of t?fl§omputing time is usually
taken up with calculating derivatives : it also applies to

those methods for solving large system?laf equations which reguire
less than a full matrix of derivatives .

This overview has discussed derivatives with respect to initial
values of the variables only; however, section (IV) will consider
parameters, and the case of exogenous var%g?les is a trivial
extension of the endogenous variable case . To avoid making a
complicated discussion even more complicated, section (IV) will only
mention our earlier example when discussing second derivatives;
however, it is trivial to substitute the general formulas in Figure 3
for those in Figure 2, whenever they apply in the second derivative
calculation, to arrive at more general methods. Section (VII) on
stochastic optimization will provide a partial example of these
possibilities.

TammT 7 CUBE AT LEFT REPRESENTS:
e 92%x, (1)
Py g raxjwkaw) g
TRIPLE SECTION IV ALSO SPELLS COUT:
N T O™ 3
4mNT ANI . gz-i»xi (T)
K p 385%, (07 .
(INPUT) b
| a and linear combos, etc.
’ 0
(57 7 @SYNCHRONISTIC
3mN 7 J P (a+b+m) mNT
L ‘//// FULL CUBE COSTS 3mNoT
1 (OUTPUT)

Figure 4: Costs of Obtaining Various Sets of Second Derivatives

Figure 4 provides a summary of the properties of the four variable-
variable second derivative calculation methods provided in section
(IV). The set of ordered derivatives of 25 (T) to x2:(0) and xk(O) forms
an N by N by N cube, as shown; each method computes” a subset of the
cube, at approximate costs shown. Again, in practice, the key point

is to compute only the subset required, and not pay for the entire
cube. The five methods for computing variable-parameter second
derivatives offer the same subsets (except that an upwards column and

a row pointing backwards count as two separate cases) for the same
rough costs.

Section (III) will show that variable-parameter second derivatives
provide meaningful information about a ? geié essentially eguivalent
to what MIT provides for linear systems) by looking at changes
in eigenvalues. 1In effect, they tell us, for a change in a parameter
of the system, how its dominant dynamics (revealed in the matrix of
ordered derivatives to variables) change.

Among the possible applications is the use of Newton s method in
estimation and optimization. It is straightforward to use the full
backwards approach here for parameter-parameter derivatives; this
allows computation of all the second derivatives one_needs in order

to use Newton’'s method, for a rough cost of only 3mN“T, about the same
as what people have paid to get only first derivatives when using
forwards methods.

Tup i,

(IID) SENSITIVITY ANALN SIS nETHUDS FOR OMNAMIC M oD ELS

The purpote of sensctivily analysis is to help one understand what
inputs or model features really drive the results which come out of
using a model. This has several possible applications:

o It can help the consumer of model results to better
interpret these results.

o It can help the model user to better understand and use the
model.

o It can help the model developer or evaluator to focus effort
on the most important assumptions of the model.

Comprehensive sensitivity analysis has at times pinpointed crucial
inputs which had received ?S§ious attention beforehand either by
modellers or by evaluators .

Because there is no limit to the number of ways in which a person can
"understand" a model, the field of sensitivity analysis is open-
ended. This paper has a more narrow focus in this section: to show
how certain kinds of information now being provided for l%Ti?r models
in the user-oriented conversational software pacage Troll can
also be provided for nonlinear models, at acceptable cost and without
approximation.

As part of their work under EIA contract, the develogiE? of Troll
have developed a linear sensitivity analysis package which
addresses the following questions:

o Which inputs or assumptions have the greatest impact on the
outputs? Is the impact positive or negative?

o What patterns tend to dominate the system (i.e. the model
variables) when the model is run out for several time periods?

o Do the dominant patterns tend to oscillate or grow in intensity,
and if so, with what rate and frequency?

o Which inputs or assumptions have the greatest impact on the
dominant patterns and on their rates of growth or oscillation?

The first of these questions can be answered by looking at the matrix
of ordered derivatives, described in section (II). But with medium
to large nonlinear models, it is expensive to calculate the entire
matrix. Since our concern is usually to pinpoint those inputs, out
of all the inputs, which most affect a few key results of interest,
the "backwards" methods can provide the needed information at
acceptable cost. As in Troll, we can convert these derivatives to
"elasticities" by performing simple multiplications, in order to

make the results more intelligible to economists.

The second and third of these questions are easily answered, for
linear systems. It is well known in mathematics that linear systems
come to be dominated by certain "characteristics vactors" or
"eigenvectors," which can be calculated; their rates of growth and
oscillation are given in their "eigenvalues." Roughly speaking,
this says that all systems have certain "resonant frequencies" and
patterns of fluctuation and growth which occur at those frequencies.
When the initial state of the system is changed, the output at

later times tends to change in proportion to the fastest growing
eigenvector, regardless of which variables are changed.

With nonlinear systems, the situation is more complex. There are no
eigenvectors. However, the matrix of ordered derivatives itself
should show whether there exist dominant patterns, which lead to
certain kinds of final impact (at time T) regardless of what
variables are changed initially; if such patterns do exist, the rows
of the matrix should all be close to proportional to each other.
This implies that the columns should be proportional to each other
as well. 1If several different results of interest are dominated by
the same inputs, in the same proportions, as revealed by backwards
sensitivity analysis, then there is some evidence that there exist
dominant patterns in the nonlinear system. One run of the forwards
sensitivity analysis, based on perturbing some inportant input, will
indicate what the dominant pattern is; the behavior of the impact
vector ("z" in Figure 2) over time indicates what the growth and
oscillation of the dominant pattern looks like, at least in the later
periods.

Finally, to see how the dominant patterns of the system change, one
can simply look at how the matrix of ordered derivatives changes

when certain inputs are changed. This requires the calculation of
selected ordered second derivatives. For example, the responsiveness
of a result R to an initial wvalue, x, is an ordered derivative; the
impact of a parameter a in changing the responsiveness of the system
to x is an ordered second derivative.

10

Ideally, a sytem like Troll should have all the methods of section
(IV) available, and should pick the best method to use automatically
on the basis of costs calculated for specific tasks. Eventually,

a more complete sensitivity analysis package ahould also contain
tools which address:

o0 the degree of coupling between different Subsystems

o0 global sinks and sources and other topological properties

0 ergodic properties

o changes in eigenvalues with respect to inputs
The methods of the following section are %fg}cularly important for
models which, like those of Jay Forrester use small time
intervals and recursive equations rather than simultaneous equations;

however, as noted in section (II), they can be applied to both types
of model.

11

(IV) SUMMARY OF DIFFERENTIATION METHODS
For purposes of this summary, assume a nonlinear model in reduced
form: A
zZ(t+l) = £((z(t), u(t)),

which may be linearized about a solution trajectory to vield:

x(t+l) F(t)x(t) + B(t)u(t),

where F(t) is the Jacobian of £ about the trajectory. The methods
given below will be derived, and generalized to cases of multiple
lags, network models and arbitrary result fuctions, in sections (V)
and (VI). With those derivation technigues, it ig simple to
calculate derivatives with respect to ex?%§nous variables, u(t);
examples are given in another EIA report » but the details will
not be given below, for the sake of brevity. The discussion below
will be limited to derivatives of relevance to sensitivity analysis,
as discussed in section (III).

Assume that time will range from 0 (initial values) to T (final
ocutcome) .

Methods To Compute First Order Derivatives

Forward Sweep:

To compute derivatives of all outcomes with respect to a change in
one initial value Zj(O):

x(0) = ey (4.la)@

x(t+l) = F(t)x(t) (t=0 to T-1) (4.1b)

x(T) contains the derivatives ("impact multipliers").

To compute derivatives of all outcomes with respect to one

parameter "a":
”
x(0) = 0 (4.2a)
(2]
x(t+l) = F(t)z(t)+§’a(t), (t=0 to T~1) (4.2b)
where:
4]
(£75) =%'-£ (g_(t)-fj/ (4.3) ¢

O. r

12

Backwards sweep:

To compute all derivatives of a target variable z;(T) with respect to
initial values zj(O) for all j:

27 (1) = e;T “(4.42)

»

% ()

X (£+1) F(t) (t=T-1 to 0) (4. 4b)

z'(O) contains the derivatives ("impact multipliersg").

To compute all derivatives of z;(T) to a parameter "a," as well,
add to eguations (4.4) the eguations to determine a scalar "W(t)":

4 0 (4.5)

W™ (T)

w’(e)

i

Wl (t+l) + xT(0)E 4 (b)

Methods To Compute Second-Order Derivatives (Two Initial Values)

These are methods to compute second derivatives of model outcomes with
respect to a pair of initial values. (i.e. Second derivatives of z(T)
with respect to z(0) and z(0)).

Forward sweep:

To compute changes in impacts of z.(0) when zk(O) is changed (i.e
second derivatives of all targets with respect to zj(O) and zk(O)):

x(0) = ey (4.6a)

y(0) = ep (4.6b)

x(t+l) = F(t)x(t) (4.6c)rﬁ
y(t+l) = F(t)y(t) ' (4.6df

w(t+l) = F(t)w(t) + F (£)x(t)y(t) (4.6eT

(w(T) contains the second derivatives)

Where:
Py (e) = _9Fig(2(e) : .

Dz (t)

13

and where (4.6) includes notation from physics representing:

E F’ijk(t)xj(t)yk(t)

Tk ,
Exploiting the sparsity of F° is crucial to computational efficiency
here.

Backwards sweep:

To compute all second derivatives of a selected outcome z;(T):

w

2T = eyt (4.8a)
H(T} = 0 (a matrix) (4.8b)
x(t) = x (t+1)F(t) (4.8¢)
H(t) = FU()H(E+1)F(£) + x (£+1)F’ (k) (4.847"

H(O0} is the matrix of second derivatives.
Triple sweep:

To compute changes in impacts of all other initial values on z. (T)
when 25(0) is changed (i.e. second derivatives of z;(T) with respect

to zj() and all z,(0)):
9
x(0) = &5 (4.¥l3) »
x(t+1) = F(t)x(t) (4.,?30)
£ (T) = eyt (4.9c)
w(T) = of (4.94)
x7(t) T x (t+1)F(t) (£=T-1 to 0) (4.e)
wit) = w(t+l)FP(t) + x (t+1)F (t)x(t) (4.%5)

w({t) contains the second derivatives.

Synchronistric sweep:
To compute how much responses by z; (T) with respect to z.(0) change
when zp (0} changes (i.e. to compute just one second derigative):

x7(t) = ;7T (4.10a)

]
D

x7(t)

i

x (t+1)F(t) (t=T-1 to 0) (4.10b)

14

x(0) = ey (4.10c)
y(0) = e | (4.104)
W(0) =0 (4.10e)
x(t+l) = F(t)x(t) (4.10F)
y(t+l) = F(t)y(t) | (4.109)
W(t+l) = W(t) + x " (£)F (t)x(t)y(t) (4.10h) »

Notice that in practice one would sweep back a set of x ', to represent a se
of targets, and sweep forward a set of x(t), for the sake of efficiency;
the approximate costs in Figure 4 assume that this is done. One would
do likewise with the forwards sweep. Both in (4.8h) and, to a lesser
degree, (4.6e), one can perform the multiplications cheaply by
rationally considering the total set of what is needed. Thus,

whichever is smallest - the set of 5' or that of x - should be
multiplied first by F’, in (4.8h), so as to reduce the dimensionality
of the problem; index combinations irrelevant to the set of

multipliers being requested may be left out. The synchronistic sweep
through (4.8g) may also allow one to be sure that some multipliers

are small, even without calculating them.

Methods to Compute Second Order Derivatives (Variable-Parameter)

These are methods to measure changes in ordered derivatives in
response to changes in one or more parameter "a" (i.e. second
derivatives of z(T) to z(0) and a set of "a").

They are basically just straightforward alterations of the
variable-parameter methods above. In effect, equation (4.2b)
represents the forwards propagation equation for a parameter, while
equation (4.l1lb) represents the same for a variable; whenever (4.lb)
has been used, we now use (4.2b) instead. See above for
considerations in using the various methods.

Forward Sweep:

For responses of all targets to changes in z.(0), the change in
response by increasing "a" (i.e. second derivatives of all targets
with respect to zj(O) and "a"):

x(0) = ey (4.11a)
y(0) =0 (4.11b)
w(0) =0 (4.11c)
x(t+l) = P(t)x(t) | (4.114)

15

“Qz(t+l) = F(t)y(t) + E’a(t) (4.11e)
w(t+l) = F(t)w(t) = F (t)x(t) + F'a(t)ﬁ(t)z(t) (4.11€F)
(w(T) holds the derivatives.)
Backwards Sweep:
For responses of z;(T) to changes in all components of z(0), the
changes in response by increasing "a" (i.e. the second derivatives of
z; (T) with respect to "a" and zj(O) for all j):

Add to equations (4.8) the equations:

w(T) = 0 (4.12a)

W(t) = w(t+l)F(t) + x (t+1)F j(t) + £ _(t)H(t+1)F(t) (4.12b)
Triple sweep to all variables:

To compute the second derivative of z. (T) with respect to "a" and to

zz(g), for all j simultaneously, when eguations (4.8) are not being

used:
y(@) =0 (4.13a)
y(e+l) = F(t)y(t) + £7_(t) (4.13b)
x(T) = ;7 (4.13¢)
w(T) = 0T (4.134)
x7(t) = x (t+1)F(t) (t = T-1 to 0) (4.13e)
wit) = w(t+1)F(t) + x (t+1)F _(t) + x (t+1)F (t)y (t) (4.13F)

Triple sweep to all parameters:

To compute the second derivative of z; (T) with respect to zj(O) and

16

(ﬁéu

parameters "a" (typically for several "a", with equation (4.14h)
replicated for each "a"):

x(0) = ej (4.142)
x(t+l) = F(t)x(t) (4.14b)
Ww(T) =0 , | & 14c) o
x(T) = e;7T (4.144)
y'(T) = of (4.14e)
x“(t) = x (t+1)F(t) (4.14f)
yo(t) = X’(t+1)F(t) + x " (t+1)F (£) x(t) (4.14q9)
W(t) = W(t+l) + x " (t+1)F 7 (£)x(t) + y (t+1)E7 (t) (4.14h)

The equations (4.14) answer the qguestion,"How much does the
responsiveness of z;(T) to parameter ‘a change when zj(O) is
changed?™"

Synchronistic sweep:

For the second derivative of z;(T) with respect to a parameter "a" and a
variable zj(O):

x(T) = e;7T (4.15a)
x7(t) = x (t+1)F(t) | (4.15b)
x(0) = ey (4.15¢)
W0 =0 (4.154)
y(0) =0 (4.15e)
x(t+l) = F(t)x(t) (4.15¢F)
y(t+l) = F(t)y(t) + £7,(t) (4.15q)
WD = W 4 x"(ADF @) x(B)z(t) + X D F g x) 4. (Sh) .
with seds of z‘;('ib, 2;(0) anrd “a", we typically pick one method aut .

of the five, and sweep all sets together to avoid duplication of
effort. The triple-sweep to all parameters, for example, is far more
efficient when we sweep a set of parameters together; in that
situation, only (4.14h) needs to be recalculated for each parameter.

17

(V) DERIVATION OF BACKWARDS SWEEPS: DYNAMIC FEEDBACK

Basics of Dynamic Feedback

Equations (4.4) may be derived in several ways. Section (VI) will
give a relatively easy and informal derivation, based on methods
borrowed from physics. Here, we will use the "dynamic feedback"
principle illustrated in Figure 3, in section (II). This principle
is slightly more complicated to explain than the other derivation
is, but the principle can be applied easily to a wide range of
problems. It is based on a "chain rule" for ordered deriv?g}ves,
the prrof of which is reproduced from the original source in
Appendix A,

Given an ordered or partially ordered system of variables, with
fundamental dynamic relations expressable as:

X; = fi(xi—l' <o X1, parameters), (5.1)

it is proven for the corresponding ordered derivatives that:
n

+ _ +
9%, 9, Ixy (5.2)

RS =371 0%y

where we are combining an ordinary partial derivative (simply the
derivative of the function f; as it appears as an algebraic

expression in equation (5.1)} with ordered derivatives. Also, from
the definition of ordered derivative (see Appendix A):

2a a

The simple model assumed in section (IV) may be written as:

Zk,t+l = fk(ZI't’ e 2 8 ’Zp't’ e o o Zn’t) (er all k,t)

If we order the numbers Zy chronologically (i.e. later times
are treated as later causai%y), and if we choose "x." and "xj" in
equation (5.2) to represent z, and z respectively, then

\ . A . t
substitution into eqguation (5.2 tellsths:

o'x, Z'afk@(m_ x,

')zpm = 8z,(t) 9z, (£+1)

Note that the simple partial derivatives of £, (2(t")), for t not
equal to t, are simply zero in this case, so that they do not
contribute to the sum. In other words, terms enter the sum only

18

when they represent a direct causal link. "x_" in equation (5.2)

can be associated with any measure of the final outcome of the system,
such as z; m; with this substitution, the equation above becomes >
identical o0 equation (4.4b), with the definition:

07 x
'sz(t)

x'k(t) - n

Likewise, the remainder of equations (4.4) is also correct, under

these substitutions. These substitutions are the same kind of
substitution that one makes when applying the ordinary chain rule of
basic calculus to specific functions and problems.

Using the same procedure, but associating "xj" with a parametefﬁa", 4
and treating parameters as causally prior to”all other variables (as
in Appendix A), equations (4.5) follow directly from substitution.
With a more complex model, however (e.g. a large network of relations
which is essentially sparse), it may be less expensive to apply (5.2)
directly to each node (variable) in the network. For example, direct
use of (5.2) may be essential with synthetic "negron networks."
Likewise with multiple lags, for which the eguations are given below.

Second Order Backwards Sweeps

For convenience, let us write the outcome whose derivatives are

desired as L = x,. We may then rewrite equation (5.2) as:

+ n +
'L — 9, 'L *(5.3)

ng K=3+1 ’axj
Differentiating with respect to i, for i>j:
n
N 9,V ’§+L Al . S ';)fk (5.4)

— — ()
Sxpx,

- “\)+ -
axj axi axk ?xk axi Xy
=j+l

(Note: in applying the chain rule, 5.2, to 5.4, it is important that
the new x,. will now itself be a derivative of L at time T, and will
not equal L itself. The only complication to worry about from this is
that the double ordered derivatives egual one when i=j=T. Also, note
that the last double derivative on the right is basically a total
differential of the algebraic expression which results from taking a
partial derivative.) In our situation it is practical to apply

19

the chain rule and substitution again to get:
Lo 4- + 2
oL . Wk 9, gfl . R £, .

axi’axj _-_Bxkgxl 'ij 'axi v)xk * Dxing

k,1 k

(5.5)

if we assume that 1 and j represent components of z at the same time,
and k and 1 components at later times. This reduces immediately to
(4.8), for the simple model assumed in section (IV). The case of a
variable and a parameter is more complex; see Section (VI).

Extensions and Applications

In sensitivity analysis, the user is often not interested in the
model variables per se at the time T, but in a function of those
variables:

R(z(T))

The more general equations above tell us that we can modify our
procedures, to pick an arbitrary R as target, by inserting modified
boundary conditions:
OR(z(T)) ,
.35..(1-) = (4.47) ¢
dz; (M
(4.8a7)

(4.9¢°) =
(4.13¢c7)
(4.1447)
(4.15a7) -

Likewise, one could set R to be the sum over time of a utility
function or loss function, and thereby use these methods to speed up
the key calculations of an estimation or deterministic optimization
problem. In such problems, there is only one target result (e.g.,
loss); therefore, the backwards sweep methods tend to be far more
efficient than conventional methods. For example, equation (5.2) has
been applied to calculating derivatives for estimating
multivariate ARMA processes, and implemented within the Time-Series
Processor (TSP) on the MIT Honeywell Multics computer.

20

Equation (5.2) leads to an obvious extension of the methods of
to the case of multiple lags.

x(t) = x 7 (t+1)F(t)

(for 5' or any other vector), we have actually intended, for any
recursive system of the form:
z; (t)

= fi,e(zi g (®)eeazy (b)), z(t-1), ... z(t-k)),
the equation:

i=1 k n
. . gfi,t . f1,t+s
X J(t) = X ;(t) + x ; (t+s)
'sz(t) ?Zj(t)
i=]1 s=]1 1i=1

21

Section "’, .
Wherever we have written:

(VI) DERIVATION OF METHODS FROM PERTURBATION APPROACHES OF PHYSICS
Most physicists would have preferred a simpler, but more specialized,
derivation of (4.4). They would begin by saying that the validity of
(4.1) is obvious from our intuitive understanding of what an impact
multiplier is. Then they would define a "propagator," "D" (where D
stands for "Dyson"), as the matrix product:

D(s:t) = F(s)F(s-1)...F(t) (6.1)
For convenience, we also define D(s:s+l) = I.

Equation (4.1) clearly implies:

%x(T) = D(T~1:0) x(0) (6.2t
The impact multiplier from zj(O) to z; (T) is then:

Dig(T—lzﬂ) o giTD(T—l:O)gj , “6.3)
where "e." is defined as the vector whose j-th component is one and 5

whose ofger components are zero. If we define:
x7(t) = ;TD(T-1:t) (6.4)

then (4.4) follows very simply from the definition of D. More
precisely, (6.1) implies:

n
D(s:t) = D(s:t+1)F(t) (6.5)

V4>
D(s+l:t) = F(s+l)D(s:t) (6.6)

and (4.4) follows directly from (6.4) and (6.5). Likewise, (4.6)
would be considered intuitively obvious. If so, it implies:

x(t) = D(t-1:0)ey
y(t) = D(t-1:0)ep
Fi(t)x(t)y(t) = F’(t)D(t-l:O)ng(t—lzmgk
, T-1
9%z (m) T,
= girD(T—l:t+l)F’(t)D(t—l:O)ng(t—l:O)gk
224 (0)d 2 (0)
£=0 (6.7)

22

This expression has the appearance of a "Feynmann integral," which is
well known to physicists. If we further define:

T-1
Hyp(t) = €; D (T-1:t+1)F (£)D(t-1 tt7)eyD(t-1:t) g, (6.8)
t=t
then equation (6.7) is equivalent to (4.8d), when we use (6.5) to
establish the recursion relations. From a physicist s perspective,
this verifies (6.7) and (4.6). 1In like manner, (4.9) is a simple
consequence of (6.7), using relations (6.5) and (6.6).
Finally, in the variable-parameter case, it is most convenient to

combine the methods of this section with those of the previous
section., We have seen that:

3+Zi(T)
sz(O)
Differentiating:

’é+ (a-l-zi(T) 9-!-

= Teme-
“'gi E(’l l)nocF(O)Ej

— ———) = — (e;TP(T-1)...F(0)e;)
'ba 321'(0) a w =
T-1
. gt &
= giTF(T—l)...F(ul)(—-p(t))F(t—l)...F(O)_e_j
R o

£=0

But if we recall the definition of F(t), we get:

quEj(t) aFij(t) ngi(Eft)) , 3+zk(t)
—_—— = T2 4
oa 9a 9Zj(t}gzk(i‘-) Pa
k

The first of these two terms we have denoted Fa'(t); the second is

23

F'(t)y(t), where v, as in equation (4.2b),

is the forwards-propagated
influence of the parameter “"a".

Thus by analogy with (6.7), we now
have:
T-1
+
——— = e D(T-l:t+l)Fa (t)D(t~l:0)gj
Vadz; (0)
t=0
T=1 t-1
+> > giTD(T—l:t+l)F'(t)D(t—l:O)ng(t-l:s)fa’(s)
t=1 s=0

(6.9)

With the recursion relations (6.5) and (6.6), the definitions of H in
(6.8), and the obvious definitions of propagated influence, the

variable-parameter methods in Section (IV) all follow Ffrom (6.9) in =&
straightforward manner.

24

(VII) APPLICATION TO STOCHASTIC OPTIMIZATION AND INTELLIGENT SYSTEMS

The remainder of this paper will discuss an example of how these
methods can be adapted to solve very difficult numerical problems.
It will show how to implement "Global Dual Heuristic Programming"
(GDHP) , a previously proposed method for (a??g?ximately) optimizing
decisions over time, subject to uncertainty . The methods

above make it feasible for the first time to apply GDHP to very
large scale models or systems. This includes systems or models
which involve many variables or sectors, whose interrelationships
are better described as a "network" than as a matrix.

Effective decision-making over time, despite uncertainty, is the
purpose of many systems, from computer systems through to government
agencies. Therefore, this example may itself have many applications.

GDHEP is not complete. To use the calculations below, one must supply
additional information, such as a model of the environment one is
trying to influence, and other information. Nevertheless, there do
exist prototype methods for providing the reqguired information, for
essentially any environment; these methods reuire further
development and extension, but there is a large body of generalized
work in statistics and numerical analysis which such developments can
build upon. By combining GDHP with generalized methods to provide
the inputs required by GDHP, one arrives at a recipe for a
generalized decision-making system, with foresight, which learns
almost everything it knows from its environment rather than a
preprogrammed "knowledge base" or "feature set."

This example provides a mathematical framework in which model
development can be treated as only one of several fundamental
activities required to support rational decision making; this
framework may be useful in allowing one to address issues which
can go beyond the internal structure of a model, issues such as
the relation between robustness and utility.

The section below will first describe GDHP, and then show how the
differentiation methods above make it possible to implement GDHP.
It will then discuss applications and structural analogies with the
human brain. Comparison with the human brain suggests possibilities

Pomadiodvimisieeer fOr enhancing the decision-~making system proposed
here.

25

GDHP: An Approach to Optimizing Complex, Nonlinear Stochastic Systems

GDHP provides an approximate solution to the following problem:

GIVEN THAT x(t+l) = F(x(t), u(t), e(t)),
where e(t) is randonm, u(t) a control (decision variables)
MAXIMIZE <U(x)>, the expectation across all future times

(Note that we use the notation "<...>" to represent expected value.)
For example, "F" may be a multiequation model of the econony, and
"U" may be a measure of the success of economic policy.

The exact solution to this problem, as described in Howard s book (17)
on dynamic programming, requires the calculation of both a scalar
function J(x) and a vector function u(x). u(x) represents the optimal
action (or motor output or policy variableS) as a function of the
state of the environment, X. J(X) is a measure of how good the
results of the actions are, in terms of their total long-term impact.
Howard proves that one can normally converge on a choice for u(x)
which maximizes the future expected value of utility (U(x) over
future x) by alternately: (1) picking values for u(x(t)), for all
possible x(t), which maximize the expected value of J at time t+1;
(2) finding the unigue function J which solves the following

equation for the current guess for u(x) across all possible X3

J(x) = < JI(E(x,ux),e)) >+ UEX) - U, (7.1)

where U, is a constant to be solved for. (In "crossroads" 16
situations this may not work; however, GDHP may still be usable ().)

Howard’ s procedure, like other exact forms of dynamic programming,
becomes impossible expensive when the number of variables in the
system (x) becomes more than a half-dozen or so. The problem is
that there are too many possible values of the vector X to consider,
In other words, J(x) and u(x) contain too many possible degrees of
freedom in the general case.

In GDHP, one tries to find the "best possible" J(x) and u(x) from a
more limited set of altern?E%yes, in order to find an approximately
optimal strategy of action . One assumes that the user (or a
higher level cemputer systefp) has already proposed functional forms
for J and u, J (x, a) and u (x, b) respectively, which depend on
vectors of parameters a and b. GDHP attempts to adjust the
parameters of J and u to make these factors fit the conditions for
optimality as closely as possible, over a finite (but not
necessarily fixed) set of possible scenarios, x, and randomly
simulated vectors €. In other words, GDHP does for models of J what
statisticians and econometricians have done for yvears with models to
predict other dependent variables.

26

GDHP entails two steps to be carried out alternately or in parallel
until convergence:

. . *
o Maximize < J (F(x,u”(x,b),e)) > (7.2)
over parameters b, scenarios x, random e.

. . * .. .
O Pick a in J (x,a) to minimize the average over Scenarios x
and simulated e of:

E = E W (5:—)— < J*(_F(z,g(g,g) v8),a) = U(x) - J*(5,3)>)2,
X .
T 1

1 (7.3)

where the W; are a set of weights. IFf Sk can solve Howard s equation ~
exactly wité u , for some a, then E will always equal zero for that a.’

The origin of Howard s equation suggests that one can treat the J~ on
the left as fixed in each iteration and still converge to a valid
result. The calculations below will implement GDHP in that way, *
although it would be straightforward (if tedious) to treat both J as
variable instead in the calculations below. The decision on whether
to treat both J as variable involves a tradeoff between the rate
- of convergence and the stability of the process. The tradeoff depends
on the minimization method used, and has not been fully resolved.

The scenarios x would normally be provided by simulating ahead

from the present, using the model F. Or they could be suggested

by combining sets of scenarios of Interest to users. The theory of
Monte Carlo integration may make it possible to be more scientific
about this process in the Ffuture.

The approximations used by GDHP reguire some explanation.

First, consider the use of specific functional forms instead of
general functions J and U. No realistic system can actually use an
estimate of J which involves a functional Form which exceeds the
available storage space; thus it is necessary to limit explicit
attention to specific realizable functional forms. We can first
analyze the problem of parameter estimation for a fixed functional
form, before studying how to compare and improve functional form,
exactly as in statistics. 1In artificial intelligence, successful
game playing machines have required "static position evaluators,"
which correspond with the approximate J function used in GDHP to
evaluate u(x).

=27

There*are several obvious problems in assuming a functional form
for g

o The true J which obeys Hgward s equation will usually not be
expressable exactly as J (a) for any a

© The need for a user or metaprogram to choose the functional
form

0 The problem of choosing weights Wy

o Dangers that autocorrelation might invalidate the adjustment
process

o The need to worry about robustness of the results, influential
observations and unobserved (estimated) variables.

All of these problems are precisely paralle]l to known problems in
estimating statistical forecasting models F with fixed functional
forms; as in statistics, these problems require analysis but do not
invalidate the approach. Indeed, the methods of analysis needed to
extend GDHP are very similar to those used in statistics.

. . *
Reasons for choosing E as a loss function for J include:

0 The derivatives of J are the familiar "shadow prices"
or "Lagrange multipliers."

o) Decisions (u) are based on comparing alternatives (usually
nearby alternatives), such that the accuracy of the derivatives
of J determines the accuracy of the decisions.

0 This eliminates Howard’ s U constan?IG?nd related potential
" problems in "crossroads" situations

o} Because e and x are both held constant in any one scenario
comparison, this method has the increased statistical 18
eff1c1ency which one expects with "paired comparlsons() "

o In effect, this procedure "explains" successes or failures
through the causal model F, and reinforces or weakens precisely
those action parameters which caused the result (or reinforces
nothing, if the result was due to chance).

Other generalized m?fgyds have been proposed to address the problem
as formulated above r and others may be proposed in the future;
however, because of the factors discussed above, GDHP appears to be
more promising than the current alternatives. More numerical and
statistical study is needed in order to fully determine the
properties of GDHP,

2%

Application of Differentiation Methods

The major difficulty in implementing GDHP is to minimize or maximize
the expressions in equations (7.2) and (7.3). 1In the general case,
where no strong special assumptions are made about J and F and u, and
where there are many parameters in these functions, this requires
that one obtain the derivatives of the quantities to be minimized or
maximized. Even when derivatives are available, minimizing a
function of many variables is not trivial. However, the EIA long
term model now converges in 10 to 100 iterations in solving 100,000
nonlinear simultaneous equations; the approach used is general, and
there is reason to hope that numerical analysts will be able to
increase the relia?i%}ty and efficiency of such methods for dealing
with large systems « As a practical metter, it is probably

best to carry out the minimization and maximization in parallel,
scenario by scenario, so as to avoid a costly process of iteration
within iteration.

This paper will indicate how to calculate the required derivatives
efficiently. The real challenge in this case is that E already
contains first derivatives; thus the required derivatives of E
involve second derivatives. Furthermore, }Toyrder to emphasize
the possibilities of "parallel processing" and network
implementation mentioned in section (II), we will assume that
parallel processors can be used to implement J and F and u at

an acceptable cost; the challenge here is to calculate the required
derivatives on a similar basis, without restricting what J and F
and u can be. (In "hierarchical control theory," for example,
one restricts the form of these functions to make the problem
tractible.) The case of ordinary sequential computers is a simple
special case of the calculations to be described.

First let us introduce some notation. Let us define:

f(x,e,b) = F(x,u (x,b),e))

Uj(x) = l‘ (U(x(t)) (7.4)
')Xi

d; = —3—— (J*(£(x,e,b)) - U(x) - 3% (x))

In this notation, the required derivatives of the expressions in
equations (7.2) and (7.3) are simply the averages across all pairs
of x and e considered of:

+
. . |
—— J7 (£(x,e,b)) (all 5) (7.5)

9b;

19

- v
A A |
= 2Wjdj (—— J (x,2)) , (all i) (7.6)
’c)ai i 'aal'éxj

]
when we hold the rightmost "a" in (7.3) constant.
Next we invoke the assumption that J*, F and u* (and thus f) can be
realized as a "network" of calculations. This is illustrated in
Figure 5; each circle in Figure 5 represents a variable to be
calculated, and each arrow rgpresents g flow of information required
in the calculations. When J , F and u are expressed in terms of '
elementary calculations, our differentiation procedures will appear -
more complicated, but this is deceptive; the key point is that the
elementary calculations are each very simple to perform, and to
differentiate.

- r—\\‘_“‘-___5>< &)

—

:Fiqure 5: Realization of GDHP As a Triple Network to Make Decisions

3D

