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ABSTRACT 

 
This paper gives highlights of the history of the neural network field, stressing the fundamental ideas which have been 

in play. Early neural network research was motivated mainly by the goals of artificial intelligence (AI) and of functional 

neuroscience (biological intelligence, BI), but the field almost died due to frustrations articulated in the famous book 

Perceptrons by Minsky and Papert. When I found a way to overcome the difficulties by 1974, the community mindset 

was very resistant to change; it was not until 1987/1988 that the field was reborn in a spectacular way, leading to the 

organized communities now in place.  Even then, it took many more years to establish crossdisciplinary research  in the 

types of mathematical neural networks needed to really understand the kind of intelligence we see in the brain, and to 

address the most demanding engineering applications. Only through a new (albeit short-lived) funding initiative, 

funding crossdisciplinary teams of systems engineers and neuroscientists, were we able to fund the critical empirical 

demonstrations which put our old basic principle of  “deep learning” firmly on the map in computer science.    Progress 

has rightly been inhibited at times by legitimate concerns about the “Terminator threat”  and other possible abuses of 

technology. This year, at SPIE, in the quantum computing track, we outline the next stage ahead of us in breaking out of 

the box, again and again,  and rising to fundamental challenges and opportunities still ahead of us. 

 

Keywords:  neural networks, computational intelligence, backpropagation, computational neuroscience, 

neural codes, history  
1 INTRODUCTION 

 
Harold Szu has asked me to review some of the main highlights of the history leading up to the modern field of neural 

networks (as in neural intelligence, NI), starting from the early work on artificial intelligence (AI) and discussing the 

ongoing relation to the study of biological intelligence (BI). Harold himself played an important role in this history; thus 

he knows that I have been involved in many aspects of the history, from the start.  In engineering, neural networks are 

now classified as part of computational intelligence, which also includes fuzzy logic and evolutionary computing and 

related areas.  

 

The full, three-dimensional history of the neural network field is beyond the scope of any brief conference paper. Late 

in 2014, I digitized many of the historical documents, which go into far more depth than anything which has appeared in 

the open literature as yet. There have been culture wars within culture wars, more lurid than the popular TV series 

House of Cards. At good times, our community has been a lot like a hall of mirrors, with ideas serving as metaideas for 

other ideas, and reflections bouncing up and down and across disciplines. At bad times, people acting like used car 

salesmen or worse have led to backwards progress, at least in their fragments of the field.  There have been too many 

inaccurate statements made in print for any reasonable person to fully sort out, even if he or she had nothing else to do. 

 

Because the full story is so complex, I will focus here on just a few major ideas and threads which I was most involved 

with, episode by episode. 
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2 NEURAL NETWORKS AND AI THROUGH REBIRTH IN 1987/1988 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Overview of the early period 

 

 

Figure 1 gives a condensed overview of what happened in this early period. There were two major streams of thought 

which had led to initial interest in mathematical neural networks – one stream which emerged from artificial intelligence 

(AI), the three sources at the top of this diagram, and another stream which emerged from people like Hebb. To simplify 

the story, I would say that Hebb was the grandfather of the neural network field, on its mother’s side, and Von 

Neumann was the grandfather on its father’s side.  

 

Starting from the top – I remember an old cover story in Time Magazine, entitled “Thinking Machines?”, back when 

computers themselves were new.  There were three main schools of thought or strategies for how to achieve the goal of  

building truly intelligent machines in the 1960’s. 

 

One was a school which did not try to define or operationalize the word “intelligence,” but tried instead to find solutions 

for specific tasks which seem to require intelligence. They would often say: “I cannot tell you what intelligence is, but I 

can recognize it when I see it. Only by building things can we begin to understand what it is.”  Some of the early work 

in this area, like Samuel’s checker player, exhibited some important fundamental principles, which later helped us 

develop more general and powerful intelligent systems reflecting those principles [1-4]. But a narrow focus on specific 

applications also led to phenomena like the Big Blue chess system, which beat the human world chess champion, but 

relied on application-specific tricks and brute force which did not help us much towards the larger goal.  

 

Another was the general problem-solver school led by Newell, Shaw and Simon [5,6]. They argued that intelligence is 

not a collection of specific algorithms for specific problems, but a generalized ability to solve any problem or learn any 

task. In many ways, they were the true founders of AI.  They inspired a stream of crossdisciplinary research at 

Carnegie-Mellon University (CMU) which remains important to this day.  However, from the viewpoint of a 

mathematician or engineer, the goal of designing a system which “solves all problems” is not well-defined enough to 

drive tangible progress.  As part of its efforts, this school of thought put special efforts into two major classes of tasks, 

which are mathematically better defined but which still demand very general capabilities: (1) logical reasoning or 

theorem proving tasks; (2) “reinforcement learning,” newly defined [1] as the task of learning how to maximize some 

kind of reward or utility signal over time, starting from no knowledge at all about the environment or plant which is 

sending out that evaluation signal. Marvin Minsky [5] was especially excited about the possibility of  achieving truly 

brain-like intelligence through reinforcement learning. 
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John Von Neumann was a crucial source both for the second and the third stream of AI. He was the person who first 

understood and explained the modern concept of cardinal utility function [7], essential to a rigorous approach to 

reinforcement learning [2,3] and to modern practices of risk management and decision trees [8]. He also had historic 

discussions with Norbert Wiener and Warren McCulloch, which led to the initial vision of how to build intelligent 

systems by building networks of model neurons. The McCulloch-Pitts model of the neuron led directly to the early 

concepts of Multilayer Perceptron (MLP) and Adaline, pioneered by Rosenblatt and by Widrow, the two main leaders 

of neural networks in AI in those days. James Albus also developed an historic design, the CMAC design, intended to 

be a model of neural networks in the cerebellum.  

 

In those days, many people simply assumed that any real computer had to be digital, had to be based on 0’s and  1’s. 

Thus the McCulloch-Pitts model assumed that every input xk to a model neuron at any time would have to be 0 or 1. 

The model neuron, called a Threshold Logic Unit, would first calculate a linear combination of the inputs, which I 

would denote as: 

  v(t) = w0 + w1x1(t) + … + wnxn(t)    (1) 

 

and then output a “1” if this linear combination is positive and zero otherwise. Using one layer of linear neurons, 

Widrow was able to develop many very useful applications in signal processing , using Least Mean Square (LMS) 

training. LMS technology is still one of the main foundations of real-world signal processing today.  However, the early 

neural network community had great frustration in trying to train networks of neurons with more than one layer, as 

required to solve even some very simple problems. In the 1960’s, Amari wrote a paper which included a sentence 

suggesting that perhaps networks of neurons could be trained so as to minimize square error based on derivatives – 

followed by another sentence saying that this would not work.  The frustration was expressed very forcibly and clearly 

in the classic book Perceptrons.  

 

After the publication of that book, neural networks assumed the status of sheer heresy. If no one so far, including 

Minksy himself, could train neutral networks with more than one layer to address a general class of problems, then 

probably it would be impossible. Neural networks were not considered a frisky futuristic idea; rather they were 

considered to be an old discredited idea, like perpetual motion. If anyone even started to describe a way to overcome the 

problems, the immediate response would be: “It is absurd and presumptuous for you to claim that you have the ability to 

solve a problem which our great leader Minsky couldn’t. Of course, we could not even consider such a possibility.”  

And so, the actual technical details would generally not even be considered. It is frightening to me that many in 

Washington are now promoting changes in the proposal review process which would strengthen the already serious 

problems of inertia and entitlement versus technical substance. 

 

I myself first arrived on this scene in 1964, as 17-year-old freshman at Harvard, having previously taken a wide variety 

of pure mathematics courses at Princeton and the University of Pennsylvania while in high school and middle school. I 

was basically a follower of Von Neumann’s approach, but was equally inspired by AI [5] and by Hebb’s approach to 

trying to understand the mind. I was also deeply curious about what to make of the theories of Freud, whom one of my 

classmates was always talking about; they seemed a bit weird to me, but I understood that I should not lightly discount 

what people learned after decades of very deep and thoughtful effort to understand the mind. 

 

Hebb’s beautiful book about learning and the brain [10] argued that we could replicate all the intelligence of the brain if 

we could somehow find and implement the correct “general neuron model,” a model of how neurons in general learn.  

He suggested a learning rule in words, based on traditional ideas form psychology that connections which are often used 

get reinforced. For a special project for a summer computer class at the University of Pennsylvania, I tried to translate 

that idea into workable FORTRAN and demonstrate what it could do. However, no matter how I tried to adapt it, the 

Hebb rule basically ended up computing correlation coefficients. I knew enough about statistics at the time that I 

understood why one cannot learn even general linear relations just by using correlation coefficients; a fundamentally 

new approach would be needed.  I never completed that course, but kept asking how to solve the problem. There were 

no courses at Harvard that really addressed the problem; thus I took the one and only neuroscience undergraduate 

course at that time, and courses in economics which addressed the issue of distributed intelligence and optimization. 

And an independent study with Marvin Minsky. 
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From thinking about the course in neuroscience, I felt more and more than Hebb’s idea of a single general neuron model 

simply would not work, and would not match empirical reality anyway. If there are, say, three really major divisions of 

the brain, why not three different types of neuron learning rule, each very general, but each addressing different types of 

things that brains have to learn? 

 

By the time I graduated in 1967, I was well aware of Minsky’s disappointment that he and Selfridge never achieved the 

type of success they had hoped for with reinforcement learning. A design which “had to work” would not work, except 

on very small problems, not enough to qualify as a real model of intelligence. While others gave up on the 

reinforcement learning approach, I published a paper [11] arguing that it was still the right way to go to understand and 

replicate brain-like intelligence, and arguing that we could solve the scaling problems by designing learning systems 

more explicitly to approximate dynamic programming.  Later we called this Adaptive Dynamic Programming (ADP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. First ADP design proposed to Harvard 1971-71 

 

For my Harvard PhD thesis, I proposed to study and implement the ADP design shown in figure 2. The idea was to 

achieve Hebb’s goals, using three types of neuron, to implement three fundamental functions: (1) to learn to 

approximate the J function (“value function”) of dynamic programming; (2) to learn a stochastic model of the 

environment, needed for correct training of the other two networks; and (3) to learn what actions to take. (I have 

recently digitized those thesis proposals, one of which I sent to an offset printer and distributed very widely in those 

days.)  The dashed backwards lines represent derivative signals, to be computed by an algorithm which I then called 

“dynamic feedback,” which is now called backpropagation. (As I understand it, that was the term invented by 

Rosenblatt for a totally different algorithm, but the community decided to reuse the term.) The pattern recognition 

problems described by Minsky [9] enter here as one part of how one could train these kinds of networks, such as the 

Model network, which should be able to predict classifications if need be. 

 

A key part of making this work was to change the model neuron. To try to get acceptance, I proposed the minimal 

changes needed to make it work. I proposed the use of a “continuous logic unit (CLU)”, whose inputs and outputs 

would all be in the range from 0 to 1. Equation 1 would still apply, but the output of a neutron would be set to equal v, 

except when v is outside the range (0,1), in which case it would be truncated to 0 or 1.  

 

I remember vividly my discussion with Minsky, when I suggested we coauthor a paper reporting how this solves the 

problem of training MLPs.  Minsky replied that no one would accept my change, because everyone knew that neurons 

input and output spikes, which are a 0/1 code.  I then pulled out the book Sernsory Communication by Rosenbluth (one 

of the texts in my earlier Harvard neuroscience class), and showed him actual time-series recorded from cortical 

pyramid cells, the backbone of human higher intelligence.  The time-series showed a regular pattern of “volleys,” of 

piles of spikes, one pile after another, at regular time intervals, such that the actual size of the pile varied continuously 

between some minimum and maximum. The natural way to model such time-series is as continuous variables over 

sampled time, following the “clocks” which are known to govern the cortex [12,13]. Minsky said he simply could not 
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get away with publishing the idea, empirically valid or not, because he felt that the force of traditional folklore was just 

too great in the world of computational neuroscience. 

 

In the end, after more and more very weird experiences, the Harvard professor chosen to head my thesis committee 

explained that they were all very skeptical about whether my dynamic feedback method could actually give the correct 

derivatives for use in training any kind of network. (Ironically, that also included a person whom some computer 

scientists assert invented the method!) To address that, I provided a truly rigorous proof (using standards of logic I 

previously learned from a graduate course of Alonzo Church at Princeton), and the thesis was accepted. I proved and 

demonstrated that my new algorithm, the chain rule for ordered derivatives, can be used to give correct derivatives for a 

very wide variety of nonlinear systems, from neural networks to advanced statistical models to econometric models 

[14]. This 1974 thesis, the first account of the general backpropagation method, has since been reprinted as a book [15].  

 

The Harvard faculty did require that I expunge the sections dealing in detail with neural networks as such. They argued 

that backpropagation and its applications in statistical forecasting were already enough for a thesis, and that I should 

save the other material for later.  In 1980, I did have a chance to present some of that detail at an IFIP conference [16], 

and distributed that conference paper to a few select institutions, four of which announced soon after that they had 

invented a new method (though one of the four retracted the claim after priority become very clear.).  

 

The solution to Minsky’s problem was perhaps the most important single event leading up to the rebirth of the neural 

network field in 1987/1988, but it certainly was not the only important event, as Figure 1 suggests. When at MIT, 

Stephen Grossberg had shown that Hebbian learning actually can be used to construct a kind of associative memory – 

something which can play an important role as PART of a system like what is depicted in Figure 2 [3].  Kohonen and 

Hopfield  published important work on generally similar lines. The cognitive scientists played a vital role in 

communicating and explaining this new way of thinking about intelligence. 

 

The key event in 1987 was a wildly successful IEEE conference organized by Robert Hecht-Nielsen on neural 

networks, the first ICNN conference.  Soon after came the formation of the International Neural Network Society, 

INNS, founded by Stephen Grossberg, and its first annual meeting in 1988.  At that meeting, Barbara Yoon of 

CDARPA presented a major new funding initiative in neural networks, building on priori work by Jasper Lupo and 

Craig Fields. 

 

3. EARLY NSF ERA 1988-1992 
 

For me personally, the two most important events in 1988 were a new program in neuroengineering at NSF which I was 

invited to lead, and a chance to address the 1988 IEEE International Conference on Neural Networks (ICNN), which 

then implied an audience of thousands in San Diego, under the guidance of Bernie Widrow. 

 

The program at NSF was an outgrowth of the existing program in photonic technology, which had begun to develop a 

major component in optical computing.  Photonic engineers had told NSF more and more that photonics could give us a 

massive improvement in throughput in general-purpose computing, if we use photonics to implement truly massive 

parallelism exploiting neural networks kinds of architectures. As NSF checked out this claim, people in electronics said 

that they too could increase throughput thousands or millions of times, using parallel processing, but they said that it 

would only be useful for a few niche markets like matrix multiplication; it would not be relevant to general purpose 

computing. Then, Carver Mead of CalTech, one of the fathers of VLSI, told NSFF that the brain itself uses that kind of 

massively parallel architecture, and that it is not a niche market.  The NSF program director in the area the concluded 

that a massive improvement in computing throughput is possible, but only if we make good on understanding how 

massively parallel processing can actually be made to work, in brain-like fashion, in general purpose computing. The 

neuroengineering program was set up to seek that kind of understanding. 

 

For many years, neutral network chips and photonics were a major part of neural network conferences, but they never 

could quite keep up with Moore’s Law, with the rapid growth in speed of general-purpose chips. Practical applications 

of ANNs grew in many areas, but implementation on digital chips was good enough until the last ten years or so 

(beyond the scope of this section). Nevertheless, looking ahead to the time when massive parallelism would be ever 

more important, the main focus of research in that program was to develop general purpose algorithms of dual use, 
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either making the most of massive parallelism based on learning, and developing the kind of mathematics and 

algorithms which we will need in order to really understand intelligence in the brain in a functional way. 

 

To replicate brain-like intelligence, I argued, we need to remember what the function of the brain as a whole system 

really is. The brain as a whole system inputs information form the senses, and ultimately uses them to decide on actions. 

Neuroscientists sometimes call these actions “squeezing and squirting.” Neural networks for pattern recognition and 

memory are an important part of the brain and an important part of the field, but in the brain itself they are subsystems. 

To understand a subsystem, one must understand its function, and one must understand the larger function. The brain as 

a whole system is an intelligent controller, and we need to develop the mathematical understanding of that kind of 

intelligent control to have any hope of understanding and replicating brain-style intelligence. To follow through on this, 

I organized two workshops on neural networks for control, one in New Hampshire in 1988 [1], and another at the 

McDonnell-Douglas facilities in St. Louis in 1990 [17]. I announced a new emphasis area of “neurocontrol,” an area of 

crossdisciplinary cooperation between neural networks and control theory, recruiting several of the top leaders in 

control theory to address the key issues in this field. Serious applications began to emerge in a wide variety of areas, 

such as chemical plant control, aerospace control and automotive control. 

 

In 1991, the International Joint Conference on Neural Networks (a conference led alternately by IEEE and the 

International Neural Network Society) was held in Seattle, and sponsored to some degree by the Boeing corporation 

which had some of the early applications of neural networks.  I will never forget the lunch in the Boeing executive 

dining room, where someone asked how one might identify emerging technologies that really work in the end. I 

mentioned the NSF work showing that the level of optimism in science fiction has turned out to be a good predictor, 

above and beyond more obvious predictors, and one of the Boeing people groaned very, very loudly. He said: “Have 

you seen the movie Terminator II?” I hadn’t, but I promised him I would. That movie did get many, many people to 

think twice about what directions we were moving in, including me [18]. Thanks in part to help from the Ai community, 

and a few other gentle shifts in emphasis, we are not nearly in as much danger today of moving to that outcome as we 

were then, but I agree with Musk and Hawkings that we should  not forget the risks.  

 

Should we abandon this line of research altogether, based on these risks?  Are humans really ready yet for the incredible 

new capabilities which still may lie before us? For many technologies, such as certain nuclear and longevity 

technologies, I have had to conclude, sadly, that we are not yet ready, and should wait. But better understanding of 

ourselves is something of a prerequisite to becoming ready to handle more, or even to cope with the huge risks we 

already face [13].  Thus I have tried as much as I can to resist the enormous, growing political pressures to deploy quick 

solutions even in risky areas,  and put as much energy as possible into the things which are important as prerequisites to 

humans understanding themselves and maximizing their own natural capabilities.  Unfortunately, the environment in 

Washington since 2013 or so has been shifting in a direction which makes that ever more difficult to sustain, and raised 

my concern about many downside risks, especially in neurotechnology as such. 

 

Early in 1990, I still hoped that we could fulfill Hebb’s basic vision, by filling in the boxes in Figure 2 with ever more 

well-designed components, as in [17]. I recognized that these designs required too much computation time to explain 

fine motor control in the brain; thus I postulated a “two-brain” design, a kind of master-slave system, combining a 

higher-level reinforcement learning system with good function approximation ability but slow computation, giving 

value directions to a faster feedforward subordinate system, like the cerebellum of the brain [19]. But I also had many 

discussions with Albus [20] and Meystel, who argued that the emergent capabilities we see in the brain require more 

than just the kind of structures I saw then. Even if we try to minimize the amount of apriori assumptions, and rely on 

emergence and learning to generate intelligence, we do need some additional capabilities [3]. The year 1992 was 

perhaps the high point in my focus on the limited type of intelligence which I now call “vector intelligence” [3]. 

 

Collaboration with McDonnell-Douglas was extremely positive at that time, as you can see from their chapters in the 

conference book [17]. For example, the breakthrough in low-cost continuous production of thermoplastic parts was 

crucial in establishing the feasibility of highly efficient aircraft like the Boeing Dreamliner design; however, after that 

successful breakthrough demonstration in St. Louis, new owners of Boeing outsourced the production of those parts to 

Japan, and reliability has become a concern.  There are many, many equally interesting stories in the references. 
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Ford Motor company also developed two divisions, with expertise in neurocontrol and prediction with recurrent neural 

nets, which in my view was the world’s top center by far in those fields for many years, and still a major player. 

 

4.  THE MIDDLE DECADE THROUGH ABOUT 2006 
 

From 1992 to 2006, it becomes harder to summarize, because of the diversity of events and of communities going their 

own ways. 

 

1992 was the year of the first IJCNN in China, a major milestone for the field. Already by 1992, the Institute of 

Automation of the Chinese Academy of Sciences had many interesting and innovative people who attended the IJCNN, 

but between 1992 and 2006 the Chinese presence has expanded tremendously. Each nation pursuing neural network 

research has its own strengths and weaknesses, but by some metrics one might argue that China is already ahead of the 

US.  The emphasis on neural networks for engineering is part of the reason, but there may be other factors which help, 

such as Jiang Zemin’s background as an electrical engineer and traditional Chinese culture which understands that 

intelligence is not limited to the formal manipulation of words.  

 

The entropy of narrow disciplines not wanting to encourage crossdisciplinary understanding and collaboration has been 

a never-ending problem, requiring never-ending attention, especially when we believe on policy grounds that cross-

cutting understanding should be the number one objective here. Within NSF, it was a major step forwards when Dr. Joe 

Bordogna, acting head of NSF, announced a director’s competition for ideas for new cross-cutting initiatives.  The 

cognitive science program was run at the time by Joe Young, who truly believed in the same fundamental cross-cutting 

directions I did, and we got together to put together a proposal for cross-disciplinary research addresses the core issues 

in learning which call for new mathematics and yet link to natural intelligence as well.  I remember very vividly the 

meeting where we invited Howard Moraff from Computer Science to join  us, and he basically said: “OK, let’s agree on 

LEARNING as the theme.” That was a huge step forward, at a time when most AI was still committed to expert systems 

and prior knowledge as the only allowable forms of “intelligence,”  and machine learning was a fairly small embattled 

enclave.  

 

In my view, the LIS initiative had a major impact in steering a change in the culture.  It was also a very enjoyable and 

entertaining experience, but I will spare you the details.  

 

One of the many, many interesting events in this period was a workshop on neural networks for flight control, 

emphasizing the challenge of learning to control disabled aircraft fast enough to prevent them from crashing 

(“reconfigurable flight control,” RFC), led by Charles Jorgensen of NASA Ames  in 1994. White and Sofge of 

McDonnell-Douglas had reported how a real-time ADP controller could learn to restabilize disable F-15s, assuming 

heavy damage and using McDonnell’s internal simulator, in 2 seconds, well enough to save about half of the damaged 

aircraft (versus only 2% which would survive with the usual technology). Jorgensen later went on to demonstrate 

success in autolanding a large, physical MD-11 with all its control surfaces locked up – after he also solved the problem 

of how to do verification and validation for this kind of learning technology.  At this workshop, a young person from 

Washington University, Dr. Massoud Amin, presented impressive results on the use of time-lagged recurrent neural 

networks for system identification. Based on the depth of his understanding, we later recommended him to people we 

knew at the Electric Power Research Institute, who hired him to lead new activities on the electric power grid, which 

became more and more an area of important possible application.  

 

In the year 2000, NSF and EFRI jointly sponsored a workshop in Playa del Carmen in Mexico, held in the same place 

and the same week as our ADP workshop of that year, to address the use of new more powerful global optimization 

methods to try to optimize the grid as one integrated system. One of the key talks was given by Ganesh (Kumar) 

Venayagamoorthy, then a graduate student under joint supervision of two of my PIs (Ron Harley and Don Wunsch), 

who has since become a leader in the effort to develop a true intelligent power grid, and held major annual conferences 

of his own out of Clemson. 

 

Connections between fuzzy logic, neural networks and evolutionary computing also became ever stronger in this period. 
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For the electronics industry as a whole, the most important event towards the end of this period was the end of Moore’s 

Law for speed. Basically, our PCs reach 3GHz speed then, and they are still there now.  This contributed to a major 

growth of interest in Cellular Neural Networks (CNN), which had large conferences of its own (a few coordinated with 

IJCNNs), led particularly by Chua and Roska.  The effort to shift towards better use of massively parallel processing 

[21,22] has become more and more intense since then.  

 

5 MORE RECENT DEVELOPMENTS 
 

In my view, the most important single development in the neural network field was the COPN initiative from NSF [23] 

and its outcomes.  COPN (Cognitive Optimization and Prediction) was only a one-time funding effort, but the impacts 

are still visible. The program announcement for COPN was the result of intensive substantive discussions of program 

directors all across NXF engineering, and beyond. Those discussions were themselves a major crossdisciplinary 

activity. In a new paper in press [24], I explain at some length why the specific approach in COPN is essential to 

making real progress towards understanding the brain, unlike some other approaches to new initiatives which are less 

likely to produce positive breakthroughs (but do entail some serious risks).  

 

One of the four large awards from COPN was to Andrew Ng and Yann LeCun. Like many of us in the neural network 

field, they had already known that “deep learning” is one of the core pillars of all true neural network design, since the 

1980’s or earlier. But the COPN award gave them the funds needed to actually do large-scale demonstrations on 

competitive benchmarks which classic AI people had guarded closely as their own fiefdoms for decades. During the 

term of the grant, they reported numerous breaking of world records in highly competitive benchmarks in image 

recognition, speech recognition and natural language, especially. The success in those efforts attracted further support, 

initially from Google and DARPA, and has very recently led to large new communities of people using these tools. 

LeCun’s policy of making software available on an open-source basis has been another factor in the resulting 

breakthrough, which LeCun has called “the second rebirth of neural networks.”  Juergen Schmidhuber of Switzerland 

has also become a major force in the new developments, and builds on an understanding of many fundamental issues. 

 

Another COPN award expanded the work of Harley and Venayagamoorthy towards a truly intelligent power grid.  

The Independent System Operators (ISOs) which run most of the power grid in the US today already make heavy use of 

powerful computers and algorithms to optimize flows of electricity, but they are running across fundamental limits in 

speed even as they have need to upgrade their algorithms a lot to fully account for stress form renewables and new 

loads. To achieve a breakthrough in speed requires massively parallel computing, and new types of neural network 

better able to cope with spatial complexity [3]. Venayagamoorthy has been moving ahead very forcibly to develop a 

new way to handle large-scale prediction and control issues in electric power, with links to industry and other nations, 

making use of physical cellular neural networks implementing new neural network topologies. 

 

In my paper this year for the quantum computing track at SPIE, I look ahead to the future, to new possibilities to 

harness analog quantum computing to achieve levels of intelligence far beyond anything we have attempted in the past. 

But this year I have also retired from NSF; in this new era of sequestration and polarized politics, it is hard to predict 

how far we will go in living up to the incredible opportunities waiting for us, in these or other new technology areas.  
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