Comments on the Digital Universe Idea

Good morning!

To begin -- Kunio has asked me to think hard about the ideas of a Prof.
Nakagomi,

who has a mathematical framework for trying to understand physics. That
framework

is part of the general tradition which tries to imagine the universe as a kind
of digital system

or "its from bits." It is related to the
tradition of people who have tried to understand the universe more as a
"great mind, not

a great machine." Greg Bear's novel Moving Mars is one especially fun
product of that tradition.

The history and psychology of these ideas is fascinating, and similar in many
ways to the history

of religion, but I will try to resist discussing those topics here. Instead, I
will try focus

on the question in the subject line of this email: i.e., what can we really
learn here from the

limited empirical data we have to work with? And I will try to write in plain
language as much as I can.

Also, I will carry this story further than it has been carried before anywhere.

Leaving aside imagination, leaving aside the data of first person
"mystical" experience, and even leaving

aside totally unexplained anomalies in physics --

What can we actually learn about the underlying dynamical laws which govern our
universe, FROM

the empirical data which underlie the most well-verified theories of physics
today?

The three such theories which really confront empirical data, which are not a
matter of sheer invention, are:

(1) Einstein's general relativity (GR), a theory of gravity; (2) quantum
chromodynamics (QCD), sometimes called

the "quark model," our best unified understanding today about strong
nuclear interactions; and

(3) electroweak theory (EWT), a relatively recent unification of Maxwell's laws
for electric forces and magnetism, together with

the behavior of the electron and the weak nuclear forces. The second two
theories, taken together,

are called "the standard model" of physics. The theories about
gravity, electrons, electric force and magnetism

have been tested thousands of times over; they are the foundation of a lot of
our technology, and we use these theories

everyday in practical work funded by my Division at NSF. But it is very
difficult to calculate what QCD actually

predicts for most experiments, and some aspects of EWT are also hard to test;
thus we really can't be sure about

some of those details. People who work with practical nuclear physics often use
"phenomenological models"

which have large prediction errors and may not always be related to what QCD
would predict.

Even in the realm of electromagnetic systems -- the elevated theorists of
physics have not always

assimilated what the practical, empirical people have learned about quantum
measurement and things

like that.

That's all just a starting point.

---------

Now.... So far, I have yet to see ANY of the "its from bits" or "digital universe" models

ACTUALLY displaying or usefully proposing a path to able to match this basic
empirical data.

Without that, it's a kind of philosophy or hope, not a theory. Hopes are
fine... but without

at least a STRATEGY to achieve a theory... it's not so real. What's more, we
would need

a theory with some hope of explaining the data better or on simpler assumptions
than the

alternative "analog" theories (like GR itself).

So far as I know, the CLOSEST that anyone has actually come to achieving this
goal

is Wolfram's "New Kind of Science," chapter 9. The whole book is
"freely" available on the web --

with registration, which requires cookies. So I borrowed it from the library
yesterday,

in order to study more closely what it promises -- and what the hopes really
are of

creating a useful "digital" model.

Wolfram actually visited NSF for a day awhile back. The book is better in a
way, and worse in a way,

than I would have guessed. Wolfram has also discussed his ideas with a more
mainstream reviewer:

http://www.kurzweilai.net/articles/art0503.html?printable=1

The book also reminds me of some of the reviews I have seen of a recent

popular book by Laughlin of Stanford. Laughlin is an extremely serious
physicist as

well as a Nobel Prize winner, with a strong sense of empirical reality. He has
been

a great help to NSF at times. According to the reviewer's, Laughlin's new book

is a manifesto for "emergentism" against "reductionism." He
"says": Nothing we humans have

ever studied has ever turned out to be the deepest level of nature, yet.

Maybe everything we see at the deepest level of physics today is nothing but a
collection

of EMERGENT phenomena -- not fundamental any more than the waves of the ocean
are fundamental.

We should remember that the same kind of emergent phenomena COULD BE the result

of any one of millions of possible models of what lies underneath. We really
have very little knowledge at all

of what the deepest model could be, because there are so many millions of
possibilities.

And so -- Wolfram argues that his kind of "causal network automaton"
(CNA?) can reproduce the

predictions of GR, as a kind of emergent statistical result. He claims he can
get the same predictions

as GR, from a simpler and purely digital model. That sounds very exciting at
first, but...

At NSF, Wolfram said "I can reproduce the flat-space special case of
GR..." That I found very puzzling.

The flat-space version would be basically the same as

CALL it GR?

But in fact ... the book is far more interesting and promising than that.

To explain this further... to nonphysicists... I have to make an analogy and
even explain the analogy a bit.

The GR model belongs to a class of nonlinear dynamical system called partial
differential equations (PDE).

PDE are extremely common in science and engineering. When

museum a week ago, Christopher was very excited by the displays on how to
design an airplane...but

then he noticed the Navier-Stokes equations posted above one of the displays.
"What are THEY daddy?

I don't understand THAT kind of equation. Do you? Can you explain them?"
It was an interesting challenge.

They are a system of PDE made up of... 7 equations, was it? They are used
describe and predict all

kinds of normal fluids... the air which gives the airplane lift and drag, the
hot flame which gives it thrust, the flows

around the body of the airplane and in the engine... To explain the idea,
someday I will show him a very SIMPLE PDE system,

the heat equation ( a single equation), which is
relatively easy to understand.

If you try to PREDICT the future temperature, in each point on some kind of a
disk or plate... you can use the heat equation

to make accurate predictions, if you know three things: (1) the PRESENT
temperature at each point, to start;

(2) the FLOWS of heat (or laws governing that flow) at the BOUNDARY or EDGE of
the plate; and (3) the

one unspecified "parameter" of the heat equation -- the CONDUCTIVITY
of the material that the plate is made of.

(If the plate is not made of one material, or has variations in shape, a more
complicated form of the heat equation is needed,

and one has to know all that extra information.) It is well-known that the heat
equation is an EMERGENT law,

which results from microscopic collisions of molecules and the like.

In fact... even if there is no source of heat WITHIN the plate, only on the
edges... there is a lot of physics involved

in figuring out how heat flows FROM the external sources, and interacts, within
the plate.

WOLFRAM's simplified version of GR basically gets all the complex, nonlinear dynamics
of GR right

(he claims)... BUT it does not account for SOURCES (or boundaries). It is NOT
so simple

as the heat equation (or a linear wave equation, which is similar). It does
include those special

features which make GR what it is. But it does not have anything at all to
explain sources.

Now let me try to be more precise. GR, like the heat equation, is actually

a SINGLE-equation model. I believe that it can be written as:

R=cT,

where c is a parameter, and where R an T are 4-by-4 matrices that vary as a
function of space

and time. (There are objects called "R" that are scalars, a matrix,
and a 4-index tensor, and

stuff like that, but you don't need THAT much precision here and now!).

R represents the CURVATURE of the fabric of space-time. T represents the
density of energy and momentum at

the same point in space-time. In English, one might describe Einstein's
equation by saying

"Energy/momentum bends the fabric of space and time. The amount of bending
at any point

in space-time is exactly proportional to the amount of energy and momentum at that point."

Wolfram claims that he gets GR exactly for the case where T=0. And he says

that the CNAs he uses to get the same results are much simpler than the whole

apparatus of GR -- the ideas used to DEFINE what "R" is and the ideas
used to actually

solve the Einstein equation. But is this really simpler? It is a matter of
taste.

Since all we observe IS a bending of space-time, near massive sources of
gravity,

we can say that GR is the most direct statement of what we SEE empirically,

without throwing in extra details. But yet the
CNA models really

are simpler in some way, and they are promising as the start of a whole new way
to understand nature.

The proper scientific method demands that we consider multiple models IN
PARALLEL,

if they all fit empirical data as well as each other.

But... the Kurtzweil review does point out some legitimate problems.

The reviewer states that Wolfram CLAIMS he can more or less PROVE that his

results about the Ricci scalar imply that he can do what I just described.
Wolfram

told the reviewer that he HAS the calculations somewhere in a notebook. But
they

aren't in the book.

The reviewer also says that Wolfram totally screws up the need to reconcile the
model

with quantum mechanics. In fact, GR itself is not a quantum field theory.
Quantum field theories (QFT)

are a family of dynamical system closely related to PDE, but very distinct in
many ways.

In summary -- Wolfram's version of GR **COULD** be important, as an alternative
to GR, if two problems

were fixed: (1) the "unpublished calculations" need to be published
(or discovered!);

and (2) the T sources need to be understood and modelled. Even then, that
leaves us

totally high and dry about how to unify GR OR CNA with EWT and QCD, both of
which ARE

quantum field theories. **IF** Kunio is truly sincere in his interest

in the digital universe, or has friends who are, they might consider beginning
with the first of these tasks.

===========

Now -- I believe I see a way to solve (2) and the unification problem both. It
is

even more speculative, in its way, than Wolfram's GR/CNA, but I think it should

be viable -- the best hope at present for a
digital universe model to actually

match known empirical physics. I do not **BELIEVE** in a digital

universe; physicists should not be BELIEVERS. But we should do justice to the

possibility! And we should learn what we can from the exercise.

================

In essence, what Wolfram is REALLY telling us can be interpreted through the
lens of Laughlin's

vision. He is showing us how all kinds of LOCAL dynamics of CONNECTIVITY
networks

tend to level out curvature, in much the same way as heat flows level out
temperature.

Laughlin discussed a kind of GENERAL principle. Here, we have a more specific case ..

a KIND of emergent behavior (levelling out of
curvature) which results from ANY model,

digital or analog, which generates space-time as an emergent result of
space-time

connections which are actively rewired, and which obey certain very broad conditions
for

locality and balance. A more general theorem should be possible to that effect,
a theorem about

emergent properties of a large class of systems.

BUT.. what about the SOURCES
of curvature? What about the standard model?

For GR, I have just tried to describe general lessons from Wolfram. For the
standard

model (EWT+QCD), I would draw similar lessons from the work I just posted at:

http://arxiv.org/abs/hep-th/0505023.

The key property of EWT and QCD is that they are both "gauge models."

(By the way, I just bumped into an old book on my shelves called

Classical Fields: General Relativity and Gauge Theory, by Moshe Carmeli.

I wonder whether I should read it now?)

It seems that the "gauge fields" (like electricity and magnetism!)
EMERGE FROM

TOPOLOGY. And really, the classic paper by Wilczek and Zee that I discuss

was the first to spell out equations that lead to this understanding.

In fact, PARTICLES like electrons and protons, I claim, can be explained most
easily,

in an objectively conservative (even mainstream?) fashion, as "topological
solitons."

So that is where the mass, the source term for gravity and the foundation of
the standard model,

come from. SO LONG AS OUR UNDERLYING MODEL

has a concept of "topological charge" (a TWISTING of fields into a
kind of knot

in space-time!), gauge fields and the main characteristic o the standard model
fall

out as a consequence.

-------

Wolfram halfway realized this. For TWO-DIMENSIONAL "causal networks,"
he proposed crossover

lines a kind of way to introduce a kind of topology. But it only works in 2D.
And he didn't get very far with it.

---------

To be "opportunistic" -- our best chance of getting to a KIND of
digital model of the universe

as soon as possible (and our best to get to a PURE digital model someday) may
be as follows.

Relax the absolute purism of Wolfram's model. Still treat space-time as an
emergent property...

but ADD a set of "wheel" to every node or arc in the network. The
"wheel" would just be a set of

vectors or tensors taken from something like the unit sphere. (If the sphere
happened to be

very simple -- just a circle, the sphere in two dimensions -- then the new
state variables we are adding to the system would

really look like the setting of a little circular "clock" floating
over each node.) The update

laws would have to be a kind of hybrid of analog and digital; they would depend
on the clock settings.

But -- the combination of TOPOLOGICAL CONSTRAINT (fields defined over circles
or spheres instead

of infinite lines) WITH fluctuating connections...

THAT combination is what defines what we ACTUALLY KNOW from the empirical data!

Indeed, as Laughlin says, millions upon millions of theories may result in
predicting what

we have seen as an emergent behavior... but WHICH millions of theories, out of
the universe

of trillions of possible theories, most of which would NOT reproduce what we
have seen in physics?

For the most part... theories which adapt connectivity in ways which reproduce
GR (LIKE Wolfram's

or like many others), AND WHICH embody topological constraints, are what we
need.

There are a few other "filters" here, constraints on the structure of
possible underlying theories,

but not so many.

Also -- by starting from millions of possible theories, we may be in better
shape to use

NEW empirical data -- beyond or inconsistent with the standard model or GR --
to

develop and test new alternative theories based on actual data. That goes very
far!!!

------------------------------

Actually, in hep-th 0505023, I am very proud to have sketched out what I view

as something that CAN become the FIRST mathematically well-defined model

of physics that actually unifies GR and the standard model -- and at

the same time fulfills Einstein's vision of a PDE model that reflects

OBJECTIVE REALITY. But... that's one example. It is essential

to prove it out... and then to widen it to many alternatives, as per the above.

-----------

The Kurtzweil reviewer of Wolfram argues that Wolfram totally futzes

on the treatment of

That is only half-true. Wolfram's version of CNA relies heavily on an idea

I called "hypertime" in my 1973 paper (which Penrose's Road to
Reality cites).

That structure is quite enough to fit the backwards time interpretation of
quantum theory,

elaborated on in my various arxiv.org papers, which is enough to take care of
all

those paradoxes. (Though some of my discussions with Yanhua Shih

I never did publish yet... in my electronic files... the PRINCIPLES

are in the open papers, but some of the concrete details for

how they work out in specific experiments needs to be
written down someday.)

========

All for now. Maybe all for awhile. These issues might
be life-and-death issues

in the long-term, but the world is drowning right now in so MANY life-and-death
issues,

no exaggeration... and others also need my attention. Who knows?

Best of luck...

Paul